Susceptibility phantom for compatibility testing of SPECT components for a SPECT/MR hybrid system
نویسندگان
چکیده
MRI.TOOLS GmbH, Berlin, Germany A susceptibility phantom was designed and built from an acrylic glass cylinder (inner diameter: 170 mm, length: 250 mm). A reference structure consisting of 32 rods (diameter: 3 mm) was placed inside the phantom (Figure 1A) together with a plastic scale with marks every 20 mm. The phantom was filled with agarose gel (εr = 75, s = 0.73 S/m) to mimic human tissue [2]. Amplitude and phase images were acquired with a gradient echo technique at 7.0 T (5 echoes TE=5/10/15/20/25/30 ms). A reference image was acquired with the phantom placed longitudinally in the magnets isocenter without the object under test (OUT). Subsequently, the OUT was positioned at the front end of the phantom (Figure 2A) and a series of tranversal images covering the entire phantom was acquired. A post-processing algorithm was used to evaluate image. This setup was employed to examine the MR compatibility of a copper cooling block (52 x 74 x 8 mm3). No distortion was found to be at d = 30 mm, d = 30 mm and d = 200 mm for three different orientations of a copper cooling block. The proposed setup supports the assessment of susceptibility effects induced by SPECT components. Our results demonstrate that the orientation and position of SPECT
منابع مشابه
An Experimental Study of the Feasibility of Simultaneous Mri and Spect Imaging
Purpose: We had previously shown the MR compatibility of CZT based single photon detectors and associated nuclear data acquisition electronics [1]. The purpose of the present work was to study the feasibility a combined MRSPECT system operating inside a 4T MR system for dual-modality MR-SPECT imaging. The current investigation included a study of the effect of SPECT detector/collimator system o...
متن کاملInfluences of reconstruction and attenuation correction in brain SPECT images obtained by the hybrid SPECT/CT device: evaluation with a 3‐dimensional brain phantom
Objective: The aim of this study was to evaluate the influences of reconstruction and attenuation correction on the differences in the radioactivity distributions in 123I brain SPECT obtained by the hybrid SPECT/CT device. Methods: We used the 3-dimensional (3D) brain phantom, which imitates the precise structure of gray mater, white matter and bone regions. It was filled with 123I solution (20...
متن کاملSimulation of a Quality Control Jaszczak Phantom with SIMIND Monte Carlo and Adding the Phantom as an Accessory to the Program
Introduction Quality control is an important phenomenon in nuclear medicine imaging. A Jaszczak SPECT Phantom provides consistent performance information for any SPECT or PET system. This article describes the simulation of a Jaszczak phantom and creating an executable phantom file for comparing assessment of SPECT cameras using SIMIND Monte Carlo simulation program which is well-established fo...
متن کاملOptimization of an ultra-high-resolution rectangular pixelated parallel-hole collimator with a CZT pixelated semiconductor detector for HiRe-SPECT system
Introduction: In nuclear medicine, the use of a pixelated semiconductor detector such as CZT is an of growing interest for introducing new devices. Especially, the spatial resolution can be improved by using a pixelated parallel-hole collimator with equal holes and pixel sizes based on the pixelated detector. The purpose of this study was to compare the effect of pixelated and ...
متن کاملA model based, anatomy dependent method for ultra-fast creation of primary SPECT projections
Introduction: Monte Carlo (MC) is the most common method for simulating virtual SPECT projections. It is useful for optimizing procedures, evaluating correction algorithms and more recently image reconstruction as a forward projector in iterative algorithms; however, the main drawback of MC is its long run time. We introduced a model based method considering the eff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 1 شماره
صفحات -
تاریخ انتشار 2014